MEMORIA RAM



La memoria principal o RAM (Random AccessMemory, Memoria de Acceso Aleatorio) es donde el computador guarda los datos que está utilizando en el momento presente. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada.

Se le llama RAM por que es posible acceder a cualquier ubicación de ella aleatoria y rápidamente
Físicamente, están constituidas por un conjunto de chips o módulos de chips normalmente conectados a la tarjeta madre. Los chips de memoria son rectángulos negros que suelen ir soldados en grupos a unas plaquitas con "pines" o contactos:

La diferencia entre la RAM y otros tipos de memoriade almacenamiento, como los disquetes o los discos duros, es que la RAM es mucho más rápida, y que se borra al apagar el computador, no como los Disquetes o discos duros en donde la información permanece grabada.

Tipos de RAM

Hay muchos tipos de memorias DRAM, Fast Page, EDO, SDRAM, etc. Y lo que es peor, varios nombres. Trataremos estos cuatro, que son los principales, aunque mas adelante en este Informe encontrará prácticamente todos los demás tipos.

DRAM: Dinamic-RAM, o RAM DINAMICA, ya que es "la original", y por tanto la más lenta.
Usada hasta la época del 386, su velocidad típica es de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, es más rápida la de 70 ns que la de 80 ns.
Físicamente, aparece en forma de DIMMs o de SIMMs, siendo estos últimos de 30 contactos.
Fast Page (FPM): a veces llamada DRAM (o sólo "RAM"), puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia. Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns.
Usada hasta con los primeros Pentium, físicamente aparece como SIMMs de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486).
EDO: o EDO-RAM, Extended Data Output-RAM. Evoluciona de la Fast Page; permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos).
Muy común en los Pentium MMX y AMD K6, con velocidad de 70, 60 ó 50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168.
SDRAM: Sincronic-RAM. Funciona de manera sincronizada con la velocidad de la placa (de 50 a 66 MHz), para lo que debe ser rapidísima, de unos 25 a 10 ns. Sólo se presenta en forma de DIMMs de 168 contactos; es usada en los Pentium II de menos de 350 MHz y en los Celeron.
PC100:o SDRAM de 100 MHz. Memoria SDRAM capaz de funcionar a esos 100 MHz, que utilizan los AMD K6-2, Pentium II a 350 MHz y computadores más modernos; teóricamente se trata de unas especificaciones mínimas que se deben cumplir para funcionar correctamente a dicha velocidad, aunque no todas las memorias vendidas como "de 100 MHz" las cumplen.
PC133:o SDRAM de 133 MHz. La más moderna (y recomendable).

SIMMs y DIMMs

Se trata de la forma en que se juntan los chips de memoria, del tipo que sean, para conectarse a la placa base del ordenador. Son unas plaquitas alargadas con conectores en un extremo; al conjunto se le llama módulo.

El número de conectores depende del bus de datos del microprocesador, que más que un autobús es la carretera por la que van los datos; el número de carriles de dicha carretera representaría el número de bits de información que puede manejar cada vez.

SIMMs: Single In-line Memory Module, con 30 ó 72 contactos. Los de 30 contactos pueden manejar 8 bits cada vez, por lo que en un 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. Miden unos 8,5 cm (30 c.) ó 10,5 cm (72 c.) y sus zócalos suelen ser de color blanco.
Los SIMMs de 72 contactos, más modernos, manejan 32 bits, por lo que se usan de 1 en 1 en los 486; en los Pentium se haría de 2 en 2 módulos (iguales), porque el bus de datos de los Pentium es el doble de grande (64 bits).

DIMMs:más alargados (unos 13 cm), con 168 contactos y en zócalos generalmente negros; llevan dos muescas para facilitar su correcta colocación. Pueden manejar 64 bits de una vez, por lo que pueden usarse de 1 en 1 en los Pentium, K6 y superiores. Existen para voltaje estándar (5 voltios) o reducido (3.3 V).
Y podríamos añadir los módulos SIP, que eran parecidos a los SIMM pero con frágiles patitas soldadas y que no se usan desde hace bastantes años, o cuando toda o parte de la memoria viene soldada en la placa (caso de algunos ordenadores de marca).

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

DISCO DURO



Un disco duro o disco rígido (en inglés hard disk drive) es un dispositivo no volátil, que conserva la información aun con la pérdida de energía, que emplea un sistema de grabación magnética digital. Dentro de la carcasa hay una serie de platos metálicos apilados girando a gran velocidad. Sobre los platos se sitúan los cabezales encargados de leer o escribir los impulsos magnéticos. Hay distintos estándares para comunicar un disco duro con la computadora; las interfaces más comunes son Integrated Drive Electronics (IDE, también llamado ATA) , SCSI generalmente usado en servidores, SATA, este último estandarizado en el año 2004 y FC exclusivo para servidores.

Tal y como sale de fábrica, el disco duro no puede ser utilizado por un sistema operativo. Antes se deben definir en él un formato de bajo nivel, una o más particiones y luego hemos de darles un formato que pueda ser entendido por nuestro sistema.

También existe otro tipo de discos denominados de estado sólido que utilizan cierto tipo de memorias construidas con semiconductores para almacenar la información. El uso de esta clase de discos generalmente se limitaba a las supercomputadoras, por su elevado precio, aunque hoy en día ya se puede encontrar en el mercado unidades mucho más económicas de baja capacidad (hasta 512[1] GB) para el uso en computadoras personales (sobre todo portátiles). Así, el caché de pista es una memoria de estado sólido, tipo memoria RAM, dentro de un disco duro de estado sólido.

Su traducción del inglés es unidad de disco duro, pero este término es raramente utilizado, debido a la practicidad del término de menor extensión disco duro (o disco rígido).




Estructura física

Cabezal de lectura
Dentro de un disco duro hay uno o varios platos (entre 2 y 4 normalmente, aunque hay hasta de 6 ó 7 platos), que son discos (de aluminio o cristal) concéntricos y que giran todos a la vez. El cabezal (dispositivo de lectura y escritura) es un conjunto de brazos alineados verticalmente que se mueven hacia dentro o fuera según convenga, todos a la vez. En la punta de dichos brazos están las cabezas de lectura/escritura, que gracias al movimiento del cabezal pueden leer tanto zonas interiores como exteriores del disco.
Cada plato tiene dos caras, y es necesaria una cabeza de lectura/escritura para cada cara (no es una cabeza por plato, sino una por cara). Si se mira el esquema Cilindro-Cabeza-Sector (más abajo), a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene 2 cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay 8 cabezas para leer 4 platos. Las cabezas de lectura/escritura nunca tocan el disco, sino que pasan muy cerca (hasta a 3 nanómetros) ó 3 millonésimas de milímetro. Si alguna llega a tocarlo, causaría muchos daños en el disco, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7.200 revoluciones por minuto se mueve a 129 km/h en el borde de un disco de 3,5 in.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

DICIPADOR DE CALOR

disipador
Con el aumento en el número de transistores incluidos en un procesador, el consumo de energía se ha elevado a niveles en los cuales la disipación natural del procesador no es suficiente para mantener temperaturas aceptables en el material semiconductor, de manera que se hace necesario el uso de mecanismos de enfriamiento forzado, como son los disipadores de calor.

Entre ellos se encuentran los sistemas sencillos como disipadores metálicos que aumentan el área de radiación, permitiendo que la energía salga rápidamente del sistema. También los hay con refrigeración líquida, por medio de circuitos cerrados. Conforme la ampliacion del sistema se este localizando esla calor.
Buses del procesador
Todos los procesadores poseen un bus principal o de sistema por el cual se envían y reciben todos los datos, instrucciones y direcciones desde los integrados del chipset o desde el resto de dispositivos. Como puente de conexión entre el procesador y el resto del sistema, define mucho del rendimiento del sistema, su velocidad se mide en bytes por segundo.

Ese bus puede ser implementado de distintas maneras, con el uso de buses seriales o paralelos y con distintos tipos de señales eléctricas. La forma más antigua es el bus paralelo en el cual se definen líneas especializadas en datos, direcciones y para control.

En la arquitectura tradicional de Intel (usada hasta modelos recientes), ese bus se llama el Front Side Bus y es de tipo paralelo con 64 líneas de datos, 32 de direcciones además de múltiples líneas de control que permiten la transmisión de datos entre el procesador y el resto del sistema. Este esquema se ha utilizado desde el primer procesador de la historia, con mejoras en la señalización que le permite funcionar con relojes de 333 Mhz haciendo 4 tranferencias por ciclo.

En algunos procesadores de AMD y en el Intel Core i7 se han usado otros tipos para el bus principal de tipo serial. Entre estos se encuentra el bus HyperTransport que maneja los datos en forma de paquetes usando una cantidad menor de líneas de comunicación, permitiendo frecuencias de funcionamiento más altas.

Los microprocesadores de última generación de Intel y muchos de AMD poseen además un controlador de memoria DDR en el interior del encapsulado lo que hace necesario la implementación de buses de memoria del procesador hacia los módulos. Ese bus esta de acuerdo a los estándares DDR de JEDEC y consisten en líneas de bus paralelo, para datos, direcciones y control. Dependiendo de la cantidad de canales pueden existir de 1 a 3 buses de memoria.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

MICROPROCESADOR



El microprocesador es un circuito integrado que contiene algunos o todos los elementos hardware, y el de CPU, que es un concepto lógico. Una CPU puede estar soportada por uno o varios microprocesadores, y un microprocesador puede soportar una o varias CPU. Un núcleo suele referirse a una porción del procesador que realiza todas las actividades de una CPU real.

La tendencia de los últimos años ha sido la de integrar más núcleos dentro de un mismo empaque, además de componentes como memorias Cache y controladores de memoria, elementos que antes estaban montados sobre la placa base como dispositivos individuales.
Funcionamiento
Desde el punto de vista lógico, singular y funcional, el microprocesador está compuesto básicamente por: varios registros, una Unidad de control, una Unidad aritmético-lógica, y dependiendo del procesador, puede contener una unidad en coma flotante.

El microprocesador ejecuta instrucciones almacenadas como números binarios organizados secuencialmente en la memoria principal. La ejecución de las instrucciones se puede realizar en varias fases:

PreFetch, Pre lectura de la instrucción desde la memoria principal,
Fetch, envío de la instrucción al decodificador,
Decodificación de la instrucción, es decir, determinar qué instrucción es y por tanto qué se debe hacer,
Lectura de operandos (si los hay),
Ejecución,(Lanzamiento de las Máquinas de estado que llevan a cabo el procesamiento).
Escritura de los resultados en la memoria principal o en los registros.
Cada una de estas fases se realiza en uno o varios ciclos de CPU, dependiendo de la estructura del procesador, y concretamente de su grado de segmentación. La duración de estos ciclos viene determinada por la frecuencia de reloj, y nunca podrá ser inferior al tiempo requerido para realizar la tarea individual (realizada en un solo ciclo) de mayor coste temporal. El microprocesador se conecta a un circuito PLL, normalmente basado en un cristal de cuarzo capaz de generar pulsos a un ritmo constante, de modo que genera varios ciclos (o pulsos) en un segundo. Este reloj, en la actualidad, genera miles de MHz.

Rendimiento El rendimiento del procesador puede ser medido de distintas maneras, hasta hace pocos años se creía que la Frecuencia de reloj era una medida precisa, pero ese mito ("mito de los megahertz") se ha visto desvirtuado por el hecho de que los procesadores no han requerido frecuencias más altas para aumentar su poder de cómputo.

Durante los últimos años esa frecuencia se ha mantenido en el rango de los 1.5 a 4 [[]], dando como resultado procesadores con capacidades de proceso mayores comparados con los primeros que alcanzaron esos valores. Además la tendencia es a incorporar más núcleos dentro de un mismo encapsulado para aumentar el rendimiento por medio de una computación paralela, de manera que la velocidad de reloj es un indicador menos fiable aún.

Medir el rendimiento con la frecuencia es válido únicamente entre procesadores con arquitecturas muy similares o iguales, de manera que su funcionamiento interno sea el mismo: en ese caso la frecuencia es un índice de comparación válido. Dentro de una familia de procesadores es común encontrar distintas opciones en cuanto a frecuencias de reloj, debido a que no todos los chip de silicio tienen los mismos límites de funcionamiento: son probados a distintas frecuencias, hasta que muestran signos de inestabilidad, entonces se clasifican de acuerdo al resultado de las pruebas.

La capacidad de un procesador depende fuertemente de los componentes restantes del sistema, sobre todo del chipset, de la memoria RAM y del software. Pero obviando esas características puede tenerse una medida aproximada del rendimiento de un procesador por medio de indicadores como la cantidad de operaciones de punto flotante por unidad de tiempo FLOPS, o la cantidad de instrucciones por unidad de tiempo MIPS. Una medida exacta del rendimiento de un procesador o de un sistema, es muy complicada debido a los múltiples factores involucrados en la computación de un problema, por lo general las pruebas no son concluyentes entre sistemas de la misma generación.

El proceso de fabricación de un microprocesador es muy complejo. Todo comienza con un buen puñado de arena (compuesta básicamente de silicio), con la que se fabrica un monocristal de unos 20 x 150 centímetros. Para ello, se funde el material en cuestión a alta temperatura (1370°C) y muy lentamente (10 a 40 Mm por hora) se va formando el cristal.

De este cristal, de cientos de kilos de peso, se cortan los extremos y la superficie exterior, de forma de obtener un cilindro perfecto. Luego, el cilindro se corta en obleas de menos de un milímetro de espesor (una capa de unas 10 micras de espesor, la décima parte del espesor de un cabello humano), utilizando una sierra de diamante. De cada cilindro se obtienen miles de obleas, y de cada oblea se fabricarán varios cientos de microprocesadores.


Silicio.Estas obleas son pulidas hasta obtener una superficie perfectamente plana, pasan por un proceso llamado “annealing”, que consiste en someterlas a un calentamiento extremo para remover cualquier defecto o impureza que pueda haber llegado a esta instancia. Luego de una supervisión mediante láseres capaz de detectar imperfecciones menores a una milésima de micrón, se recubren con una capa aislante formada por óxido de silicio transferido mediante deposición de vapor.

De aquí en adelante, comienza el proceso del “dibujado” de los transistores que conformarán a cada microprocesador. A pesar de ser muy complejo y preciso, básicamente consiste en la “impresión” de sucesivas máscaras sobre la oblea, sucediéndose la deposición y eliminación de capas finísimas de materiales conductores, aislantes y semiconductores, endurecidas mediante luz ultravioleta y atacada por ácidos encargados de remover las zonas no cubiertas por la impresión. Salvando las escalas, se trata de un proceso comparable al visto para la fabricación de circuitos impresos. Después de cientos de pasos, entre los que se hallan la creación de sustrato, la oxidación, la litografía, el grabado, la implantación iónica y la deposición de capas; se llega a un complejo "bocadillo" que contiene todos los circuitos interconectados del microprocesador.

Un transistor construido en tecnología de 45 nanómetros tiene un ancho equivalente a unos 200 electrones. Eso da una idea de la precisión absoluta que se necesita al momento de aplicar cada una de las mascaras utilizadas durante la fabricación.


Una oblea de silicio grabadaLos detalles de un microprocesador son tan pequeños y precisos que una única mota de polvo puede destruir todo un grupo de circuitos. Las salas empleadas para la fabricación de microprocesadores se denominan salas limpias, porque el aire de las mismas se somete a un filtrado exhaustivo y está prácticamente libre de polvo. Las salas limpias más puras de la actualidad se denominan de clase 1. La cifra indica el número máximo de partículas mayores de 0,12 micras que puede haber en un pie cúbico de aire (0,028 metros cúbicos). Como comparación, un hogar normal sería de clase 1 millón. Los trabajadores de estas plantas emplean trajes estériles para evitar que restos de piel, polvo o pelo se desprendan de sus cuerpos.

Una vez que la oblea ha pasado por todo el proceso litográfico, tiene “grabados” en su superficie varios cientos de microprocesadores, cuya integridad es comprobada antes de cortarlos. Se trata de un proceso obviamente automatizado, y que termina con una oblea que tiene grabados algunas marcas en el lugar que se encuentra algún microprocesador defectuoso.

La mayoría de los errores se dan en los bordes de la oblea, dando como resultados chips capaces de funcionar a velocidades menores que los del centro de la oblea. Luego la oblea es cortada y cada chip individualizado. En esta etapa del proceso el microprocesador es una pequeña placa de unos pocos milímetros cuadrados, sin pines ni cápsula protectora.

Cada una de estas plaquitas será dotada de una cápsula protectora plástica (en algunos casos pueden ser cerámicas) y conectada a los cientos de pines metálicos que le permitirán interactuar con el mundo exterior. Cada una de estas conexiones se realiza utilizando delgadísimos alambres, generalmente de oro. De ser necesario, la cápsula es dotada de un pequeño disipador térmico de metal, que servirá para mejorar la transferencia de calor desde el interior del chip hacia el disipador principal. El resultado final es un microprocesador como el que equipa nuestro ordenador.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

REGULADOR DE VOLTAJE

Un regulador de Voltaje (también llamado estabilizador de voltaje o acondicionador de voltaje) es un equipo eléctrico que acepta una tensión de voltaje variable a la entrada, dentro de un parámetro predeterminado y mantiene a la salida una tensión constante (regulada).
Existen diversos tipos de reguladores de voltaje, los más comunes son de dos tipos: para uso domestico o industrial. Los primeros son utilizados en su mayoría para proteger equipo de computo, video, o electrodomésticos. Los segundos protegen instalaciones eléctricas completas, aparatos o equipo eléctrico sofisticado, fabricas, entre otros. El costo de un regulador de voltaje estará determinado en la mayoría de los casos por su calidad y vida util en funcionamiento contínuo.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

EL PUERTO IDE Y ATA O SATA

El puerto IDE
(Integrated device Electronics) o ATA (Advanced Technology Attachment) controla los dispositivos de almacenamiento masivo de datos, como los discos duros y WATAPI (WAdvanced Technology Attachment Packet Interface) y además añade dispositivos como las unidades CD-ROM.

Serial ATA o SATA

(acrónimo de Serial Advanced Technology Attachment) es una interfaz de transferencia de datos entre la placa base y algunos dispositivos de almacenamiento, como puede ser el disco duro, u otros dispositivos de altas prestaciones que están siendo todavía desarrollados. Serial ATA sustituye a la tradicional Parallel ATA o P-ATA. SATA proporciona mayores velocidades, mejor aprovechamiento cuando hay varios discos, mayor longitud del cable de transmisión de datos y capacidad para conectar discos en caliente (con la computadora encendida).

Actualmente es una interfaz extensamente aceptada y estandarizada en las placas base de PC. La Organización Internacional Serial ATA (SATA-IO) es el grupo responsable de desarrollar, de manejar y de conducir la adopción de especificaciones estandarizadas de Serial ATA. Los usuarios del interfaz SATA se benefician de mejores velocidades, dispositivos de almacenamientos actualizables de manera más simple y configuración más sencilla. El objetivo de SATA-IO es conducir a la industria a la adopción de SATA definiendo, desarrollando y exponiendo las especificaciones estándar para el interfaz SATA.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

SOCKET Y CHIPSET

El zócalo o socket (en inglés) es un sistema electromecánico de soporte y conexión eléctrica, instalado en la placa base, que se usa para fijar y conectar un microprocesador. Se utiliza en equipos de arquitectura abierta, donde se busca que haya variedad de componentes permitiendo el cambio de la tarjeta o el integrado. En los equipos de arquitectura propietaria, los integrados se sueldan sobre la placa base, como sucede en las consolas de videojuegos.
Existen variantes desde 40 conexiones para integrados pequeños, hasta mas de 1300 para microprocesadores, los mecanismos de retención del integrado y de conexión dependen de cada tipo de zócalo, aunque en la actualidad predomina el uso de zócalo ZIF (pines) o LGA (contactos).El "chipset" es el conjunto (set) de chips que se encargan de controlar determinadas funciones del ordenador, como la forma en que interactua el microprocesador con la memoria o la caché, o el control de los puertos y slots ISA, PCI, AGP, USB...

El chipset Prism es uno de los más usados por usuarios de GNU/Linux así como BSD gracias a la integración a la que goza este chipset ya que todos los documentos del comité de evaluación; notas, diseños de referencia, informes y resúmenes técnicos sobre el chipset se pueden conseguir de forma gratuita en la página web de Intersil

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

BANCO DE MEMORIA

BANCO DE MEMORIA
Sea cual sea el tipo de elementos de memoria que se utiliza, la memoria situada en la placa principal de una PC se ha organizado en dos bancos de memoria desde la generación de la PC 286. El primero se denomina "Banco 0" y el segundo "Banco 1".
Dado que, por lo general, es posible instalar diferentes tipos de chips de memoria, la capacidad de un banco de memoria depende del tipo de chips que utilice. Por esta razón, las placas 286 mas antiguas pueden alcanzar dos valores máximos, de 1 o de 4 MB de RAM, dependiendo de si se utilizan chips de 256 kilobits o chips de 1 megabit.
Las placas principales de las PC de alta velocidad 386 y 486 contienen casi siempre SIMM. Cuando se utilizan módulos de 4 MB, se pueden alcanzar capacidades de memoria de 32 MB "en la placa". Esto es posible porque un banco de memoria, por regla general, incluye cuatro tomas o zócalos, por lo tanto, un total de ocho tomas pueden recibir SIMM. Algunas placas contienen incluso 16 tomas de este tipo, por lo cual se puede instalar hasta un máximo de 64 MB de RAM en la placa.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

CONECTOR ATX Y LA BIOS

Conector ATX
La disposición de los conectores de alimentación tipo AT, se mantuvo durante largo tiempo, hasta que la reducción generalizada de las tensiones de funcionamiento en las placas y en las tarjetas montadas en ellas, que coincidió con la introducción del factor de forma ATX por parte de Intel, introdujo un nuevo tipo de conector de 20 pines. A su vez el conector BIOS,
acrónimo de Basic Input-Output System, es un tipo de Software muy básico que localiza el Sistema Operativo en la memoria RAM, brinda una comunicación de muy bajo nivel y configuración del Hardware residente en nuestro ordenador.

La BIOS es un firmware presente en las computadoras, contiene las instrucciones más elementales para que puedan funcionar y desempeñarse adecuadamente, pueden incluir rutinas básicas de control de los dispositivos.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

CONECTOR AT

Fuentes AT:
ya en desuso. Estas fuentes se caracterizan por el tipo de conector que va a la placa y por el sistema de encendido que utilizan.

El suministro de corriente a la placa lo hacen mediante dos conectores planos de 6 pines cada uno. Esto entre otros representaba el problema de la posible colocación equivocada de estos, lo que podía llegar a producir averías. A esto hay que añadir las salidas timo molex para alimentación de discos duros y lectores de CD.
En cuanto al sistema de encendido, este es por interruptor, que corta la entrada de corriente a la fuente.

Estas fuentes se utilizaron en las placas AT, que eran las usadas hasta la llegada de los Pentium, aunque anteriormente se utilizaron algunas fuentes ATX, pero con los conectores de la placa del tipo AT.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

MEMORIA CACHE

La memoria caché:
es una clase de memoria RAM estática(SRAM) de acceso aleatorio y alta velocidad, situada entre el CPU y la RAM; se presenta de forma temporal y automática para el usuario, que proporciona acceso rápido a los datos de uso más frecuente.
La ubicación de la caché entre el microprocesador y la RAM, hace que sea suficientemente rápida para almacenar y transmitir los datos que el microprocesador necesita recibir casi instantáneamente.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

PCI EXPRESS

PCI Express:
(anteriormente conocido por las siglas 3GIO, en el caso de las "Entradas/Salidas de Tercera Generación", en inglés: 3rd Generation I/O) es un nuevo desarrollo del bus PCI que usa los conceptos de programación y los estándares de comunicación existentes,
PCIe 1.1 puede transferir datos a 250 MB/s en cada dirección por carril. Con un máximo de 32 carriles, PCIe permite una velocidad combinada de transferencia de 8 GB/s en cada dirección. Para poner esto en perspectiva, un sólo carril permite una transferencia del doble de datos que un PCI normal, cuatro carriles permiten la misma velocidad que la versión más rápida del PCI-X 1.0, y ocho carriles permiten una transferencia comparable a versión más rápida de AGP.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

AMR

AMR:
proviene de las siglas de "Audio Modem Riser" ó manejador de audio y módem. Este tipo de ranura fue desarrollado por Intel® y lanzado al mercado en 1988, mientras que CNR proviene de ("Communication Network Riser" ó manejador de redes de comunicaciones lanzado en 1990.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

PUERTO AGP

El puerto AGP:
(Accelerated Graphics Port) es desarrollado por Intel en 1996 como puerto gráfico de altas prestaciones, para solucionar el cuello de botella que se creaba en las gráficas PCI.
Se utiliza exclusivamente para tarjetas gráficas y por su arquitectura sólo puede haber una ranura AGP en la placa base.
Con el tiempo has salido las siguientes versiones: - AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V.
- AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V.
- AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas.
- AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 GB/s y funcionando a un voltaje de 0,7V o 1,5V.
Se trata de una ranura de 8cm de longitud, instalada normalmente en principio de las ranuras PCI (la primera a partir del Northbridge), y según su tipo se pueden deferenciar por la posición de una pestaña de control que llevan.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

RANURAS PCI

Ranura pci:
El estandar actual. pueden dar hasta 132 MB/s a 33 MHZ, lo que es suficiente para casi todo, excepto quiza para algunas tarjetas de video 3D, Miden unos 8,5 cm y generalmente son blancas.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS

LAS RANURAS ISA

Las ranuras ISA:
(Industry Standard Architecture) hacen su aparición de la mano de IBM en 1980 como ranuras de expansión de 8bits (en la imagen superior), funcionando a 4.77Mhz (que es la velocidad de pos procesadores Intel 8088).
Se trata de un slot de 62 contactos (31 por cada lado) y 8.5cm de longitud. son bastante antiguas y cada vez se utilizan menos debido a que los dispositivos conectados en ella se comunican por un bus muy lento (un bus es una avenida por la cual viajan los datos en el computador; un PC tiene varios buses). Las ranuras ISA se emplean para dispositivos que no requieren una gran capacidad de transferencia de datos, como el módem interno, o una tarjeta de sonido.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • Twitter
  • RSS